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ABSTRACT 

1,5-Diazabicycl0[4.3.0]non-5-ene (DBN) and 1,8- 
diazabicyclo[5.4.0]undec-7-ene (DBU) react with 
chloro- and dichbro-phosphines leading to onio- and 
dionio-substituted phosphines. Similarly, onio-sub- 
stituted silicon and tin derivatives are prepared; they 
are used as onio-substituent transfer reagents in the 
synthesis of a trionio-substituted phosphine. 

INTRODUCTION 
Strong nonionic bases [l] play a key role in or- 
ganic and inorganic synthesis because of the sim- 
plicity of handling and mildness of reaction con- 
ditions [2]. Before the discovery in the late 1980s 
that phosphazenes and phosphatranes are ex- 
tremely strong bases [lc-h], amidines such as 
1,5-diazabicycl0[4.3.O]non-5-ene (DBN) or 1,8-di- 
azabicyclo[5.4.0]undec-7-ene (DBU) were the 
strongest neutral bases available [ la-b]. DBN and 
DBU have found many useful applications because 
of their non-nucleophilic behavior; as examples, 
they have proved to be superior reagents for de- 
hydrohalogenation reactions and important cata- 
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lysts in the synthesis of macromolecules [la-b, 2e- 
g]. However, several authors have reported unex- 
plained phenomena connected with their use [31, 
and recently, it has been shown that these so-called 
“non-nucleophilic strong bases” can indeed ex- 
hibit nucleophilic behavior [4,5]. 

In this article, we wish to report that DBN and 
DBU react with a variety of main group electro- 
philes, including low reactive ones, giving a direct 
entry to onio-substituted phosphorus, tin, and sil- 
icon derivatives; the synthesis of di- and trionio- 
substituted phosphines is also presented. 

RESULTS AND DISCUSSION 
Chlorodiphenylphosphine 1 readily reacts with DBN 
in dichloromethane solution, affording the cat- 
ionic phosphine 2a in 90% yield, as determined 
s ectroscopically (Scheme 1). The presence in the 

NMR spectrum of a doublet at 6 169.88 (Jpc = 
33.3 Hz) for the NCN moiety clearly indicates that 
the bicyclic amidine is bound to the phosphorus 
atom; furthermore, the ionic structure is proved by 
an anion exchange reaction with potassium hex- 
afluorophosphate giving derivative 2b (mp: 193- 
195°C) in 12% overall isolated yield. Note that the 
spectroscopic data for 2b are essentially identical 
to those of 2a. Surprisingly, DBN also acts as a nu- 
cleophile toward bis(diisopropy1amino)chloro- 
phosphine 4, a bulky and low reactive electrophile. 
In dichloromethane solution, 4 and DBN are in 
equilibrium with the corresponding cationic phos- 
phine 5a. This equilibrium is shifted toward the 
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product in acetonitrile, while, by exchanging the 
chloride for hexafluorophosphate, derivative 5b 
(mp: 128-130°C) is obtained in 80% yield (Scheme 
1). 

The same pattern of reactivity is found with 
DBU, the adducts being more sensitive than those 
obtained with DBN. However, onio-substituted 
phosphines 3b and 6b can be isolated and fully 
characterized. It is important to note that, under 
the same experimental conditions, 4-dimethyl- 
aminopyridine, which is known to react with 
chlorophosphites or trichlorophosphine to give onio- 
substituted compounds [6], is inert toward ami- 
nochlorophosphine 4, demonstrating that DBN and 
DBU are indeed strong nucleophiles. 

An X-ray diffraction study performed on 5b [4] 
revealed that the structure of these salts is inter- 
mediate between those of phosphenium-base ad- 
ducts A [7] and onio-substituted phosphines B. The 
positive charge is delocalized on the cluster (struc- 
ture C), a situation comparable to that of borylium 
ions in which a divalent boron atom is stabilized 
by an electron pair donor [8] (Scheme 2). There- 
fore, it is not surprising that bis(diisopropy1amino)- 
phosphenium trifluoromethanesulfonate 7 [9] reacts 
with one equivalent of DBN at 0°C in dichloro- 
methane solution affording derivative 5c (75% yield) 
(Scheme 2). 
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The next step was to prepare polycationic spe- 
cies (Weiss-type compounds [6]). Dionio-substi- 
tuted phosphines 10 and 11 were prepared in 35 
and 14% yields, respectively, by treatment of di- 
chlorophosphines 8 and 9 with DBN, followed by 
an exchange reaction with KPF6 (Scheme 3). The 
spectroscopic data for the bicyclic amidine substi- 
tuents of compounds 10 and 11 are essentially 
identical, and an X-ray diffraction study per- 
formed on 10 [4] revealed that here also the pos- 
itive charges are strongly delocalized. These deriv- 
atives formally result from the interaction of two 
DBN molecules with monocoordinated phospho- 
rus dications (RP") [lo]. The DBU adducts 12 and 
13 were prepared according to the same proce- 
dure. As already observed in the monocationic se- 
ries, they are less stable than their DBN analogs; 
as an example, derivative 13 could not be isolated 
in pure form (Scheme 3). 

The addition of three equivalents of DBN to a 
dichloromethane solution of trichlorophosphine led 
to a complicated mixture, and despite an exchange 
reaction with KPF6, all attempts to isolate the de- 
sired trionio phosphine failed. Thus, in order to 
overcome this problem, we searched for "onio-sub- 
stituent transfer agents," and, taking into account 
the high reactivity of tin- and silicon-nitrogen bonds, 
tin and silicon onio-substituted derivatives 14 and 
15 seemed to be good candidates. Successive ad- 
dition of one equivalent of DBN and KPF6 to a di- 
chloromethane solution of trimethylchlorostan- 
nane afforded derivative 14, isolated in 25% yield 
after crystallization (mp = 77-7973, while tri- 
methylsilyltrifluoromethanesulfonate reacted with 
DBN at 0°C giving salt 15 (mp = 56-57°C) in 60% 
yield (Scheme 4). These two compounds are ex- 
tremely moisture sensitive, the silyl salt 15 being 
more stable than its stannyl analog 14. 

In order to check the ability of compounds 14 
and 15 to transfer their onio-substituent, they were 
added to chloro- and dichloro-phosphines 4 and 8. 
Indeed, the corresponding onio-substituted phos- 
phines were formed in quantitative yields accord- 
ing to NMR spectroscopy. 

More interestingly, and in contrast with the re- 
action of PC13 with DBN, trionio-substituted phos- 
phine 16 was cleanly obtained by treating PC13 with 
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three equivalents of the silyl derivative 15 at 0°C. 
After crystallization from a CH3CN/Et20 mixture, 
the tricationic salt 16 was isolated in 40% yield (mp: 
110-1 13°C). The elemental analysis confirms that 
three molecules of DBN are present in the mole- 
cule. The amidine substituents are magnetically 
equivalent and the NCN carbons appear as a doub- 
let at 6 169.05 (Ipc = 42.1 Hz) in the I3C spectrum 
(Scheme 5). 

The reactivity of the onio-substituted silane 15 
toward chlorophosphines opens new perspectives 
in the synthesis of polyonio-substituted derivatives 
of main group elements and transition metals. 

EXPERIMENTAL 
All experiments were performed in an atmosphere 
of drv a r  on Melting points are uncorrected. 'H, 
13C, "P, ' 9Sn, and 29Si spectra were recorded on a 
Brucker AC80, AC200, or WM250 spectrometer. 'H, 
I3C, and 29Si NMR chemical shifts are reported in 
parts per million relative to Me& as external 
standard. 3'P and '19Sn NMR downfield chemical 
shifts are expressed with a positive sign, in parts 
per million, relative to external 85% H3P04 and 
Me,&, respectively. Conventional glassware was 
used. 

B .  

Representative Procedure for the Synthesis of 
Derivatives 2-6 and 10-12 
An acetonitrile solution (20 mL) of DBN (5.6 mL; 
45 mmol) was added dropwise at  room tempera- 

- 3 Me3SCI 
PC13 + 3 15 - 

SCHEME 5 

16 (40%) 

ture to an acetonitrile solution (20 mL) of phos- 
phane 4 (12.0 g; 45 mmol) to afford 5a. This so- 
lution was added slowly at 0°C to an acetonitrile 
solution (20 mL) of KPF, (8.3 g; 45 mmol) and 
stirred for 24 hours. The precipitated KC1 was fil- 
tered off, and the solvent removed under vacuum. 
The products were purified as indicated in the fol- 
lowing section. 

2a: Characterized in solution. IH NMR (CDCl,) 
6 1.95 (m, 4H), 3.10 (m, 6H), 3.80 (m,  2H), 7.25 (m, 
10H). I3C NMR (CDC13) 6 17.85 (d, J = 5.0 Hz), 19.30 
( s ) ,  33.65 (d, J = 25.2 Hz), 42.79 (d, J = 7.4 Hz), 
42.29, 55.50, 128.92, 130.62 (s), ,132.00 ( d , J  = 21.4), 
169.88 (d, J = 33.3_Hz), the Clp,o are not observed. 
"P NMR (CDC13) 6 1-70.77. 

2b: 12% yield. 'Colorless solid, mp 193-195°C 
precipitated a t  room temperature from CH,Cl,. 'H 
NMR (CDCI3) 6 2.04 (quint, J = 5.7 Hz, 2H), 2.28 
(quint, J = 7.1 Hz, 2H), 3.15 ( t ,  J = 5.7 Hz, 2H), 
3.43 (m, 4H), 3.93 (t,J = 7.1 Hz, 2H), 7.53 (m, 1OH). 
13C NMR (CDC13) 6-17.31 (d, J = 5.7 Hz), 18.76 (s), 
33.12 (d, J = 25.2 Hz), 42.46 (d, J = 6.5 Hz), 42.63, 
54.99 (s), 128.80 (d, J = 5.8 Hz), 130.50 ( s ) ,  130.90 
( d , J  = 13.0 Hz), 131.82 ( d , J  = 21.8 Hz), 169.85 (d, 
J = 33.2 Hz). 31P NMR (CDC13) 6 -144.61 (sept, J 
= 710.9 Hz), +71.23. Anal. calcd for C19HzzN2F6P2: 
C,  50.22; H, 4.88; N ,  6.17. Found: C, 50.18; H,4.89; 
N,  6.1 1. 

3a: "P NMR (CH2C1,) 6 +71.00. 
3b: 30% yield. Colorless crystals, mp 140-143°C 

crystallized a t  -40°C from CH,CN/Et,O. 'H NMR 
(CDC13) 6 1.80 (m, 8H), 3.21 (m, 2H), 3.54 (m, 4H), 
3.74 (m, 2H), 7.57 (m, 10H). 13C NMR (CDC13) 6 
20.46, 22.75, 25.13, 28.26 (s), 31.27 ( d , J  = 36.2 Hz), 
44.04 (d, J = 6.1 Hz), 49.87, 58.08 (s), 129.34 (d, J 
= 6.6 Hz), 130.83 ( s ) ,  131.16 ( d , J  = 16.1 Hz), 131.99 
(d, J = 21.8 Hz), 173.07 (d, J = 26.3 Hz). 31P NMR 
(CDCI3) 6 -144.12 (sept, J = 710.9 Hz) +71.56. Anal. 

Found: C, 52.19; H, 5.50; N, 5.83. 
5a: 90% yield, viscous oil, washed three times 

with EtzO (3 x 10 mL): 'H NMR (CDC13) 6 1.10 (d, 
J = 6.7 Hz, 12H), 1.73 (d, J = 6.7 Hz, 12H), 2.21 
(m, 4H), 3.08 (m, 2H), 3.54 (m, 8H), 3.87 ( t , J  = 7.3 
Hz, 2H). I3C NMR (CDC13) 6 18.75 (d, J = 5.7 Hz), 
19.51 ( s ) ,  23.76 (d, J = 7.9 Hz), 23.91 (d, J = 7.3 
Hz), 31.15 (d, J = 27.6 Hz), 42.52 (d, J = 3.4 Hz), 
43.64 (s), 47.71 (d, J = 14.4 Hz), 53.83 (s), 164.94 
(d, J = 30.9 Hz). "P NMR (CDCI3) 6 +108.56. 

5b: 80% yield. Colorless crystals, mp 128-130°C 
crystallized at  -40°C from CH2Cl2/EtzO. 'H NMR 
(CDC13) 6 1.16 (d, J = 7.0 Hz, 12H), 1.22 (d, J = 7.0 
Hz, 12H), 2.01 (m, 2H), 2.15 (m, 2H), 3.1 1 (t, J = 
7.0 Hz, 2H), 3.46 (sept d, J = 7.0 and 13.1 Hz, 4H), 
3.53 (m, 2H), 3.72 (m, 4H). 13C NMR (CDC13) 6 18.60 
( d , J  = 6.1 Hz), 19.31 ( s ) ,  23.79 ( d , J  = 7.2 Hz), 24.01 
(d, J = 7.2 Hz), 31.55 (d, J = 27.2 Hz), 42.52 (d, J 
= 3.2 Hz), 43.14 (s), 47.81 (d, J = 14.2 Hz), 53.53 
(s), 165.04 (d, J = 31.1 Hz). 31P NMR (CDC13) 6 
-144.5 (sept, J = 711.2 Hz), +108.90. Anal. calcd 

calcd for CzlH26NzF6Pz: C, 52.29; H, 5.43; N, 5.81. 
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for C19H40N4F6P2: C, 45.56; H, 8.05; N, 11.19. Found: 
C, 45.59; H, 8.10; N, 11.13. 

6a: ,'P NMR (CH2C12) 6 1108.71. 
6b: 75% yield. Colorless crystals, mp 100°C 

crystallized at -40°C from CH2C12/Et20. 'H NMR 
(CDCl,) 6 1.24 ( d , J  = 7.0 Hz, 12H), 1.30 ( d , J  = 7.0 
Hz, 12H), 1.71 (m, 6H), 2.10 (m, 2H), 2.78 (m, 2H), 
3.41 (sept d, J = 7.0 and 14.1 Hz, 4H), 3.20 (m, 2H), 
3.72 (m, 4H). 13C NMR (CDCI,) 6 20.32, 23.33 (s), 
23.50 (d, J = 7.2 Hz), 23.95 (d, J = 7.2 Hz), 25.63, 
28.21 (s) ,  29.23 (d, J = 26.2 Hz), 42.49 (d, J = 3.2 
Hz), 47.80 ( d , J  = 14.3 Hz), 49.12, 54.54 (s), 168.15 
(d, J = 21.6 Hz). ,'P NMR (CDC13) 6 -144.51 (sept, 
J = 71 1.8 Hz), + 109.63. Anal. calcd for CzIH4N4F6P2: 
C, 47.72; H, 8.39; N, 10.61. Found: C, 47.69; H, 8.46; 
N,  10.73. 

5c: 75% yield. Colorless crystals, mp 125°C 
crystallized at -40°C from CH2C12/Et20. 'H NMR 
(CDCI,) 6 1.19 (d, J = 7.0 Hz, 12H), 1.22 (d, J = 7.0 
Hz, 12H), 2.04 (m, 2H), 2.10 (m, 2H), 3.14 (t, J = 
7.0 Hz, 2H), 3.50 (sept d, J = 7.0 and 13.1 Hz, 4H), 
3.57 (m, 2H), 3.72 (m, 4H). I3C NMR (CDCI,) 6 18.61 
(d,J  = 6.1 Hz), 19.21 ( s ) ,  23.77 (d , J  = 7.2 Hz), 23.81 
(d, J = 7.2 Hz), 31.05 (d, J = 27.3 Hz), 42.42 (d, J 
= 3.2 Hz), 43.21 ( s ) ,  47.77 (d, J = 14.2 Hz), 53.04 
(s), 120.02 (q , J  = 320.2 Hz), 165.21 (d,J = 31.1 Hz). 
,'P NMR (CDCl,) 6 +108.93. Anal. calcd for 
C2J&,N~,03PS: C, 47.61; H, 7.99; N,  11.10. Found: 
C, 47.59; H, 8.03; N, 11.13. 

10: 35% yield. Colorless crystals, mp 180-183°C 
crystallized at -40°C from THF/Et20. 'H NMR 
(CD,CN) 6 1.15-1.88 (m, 20H), 2.08 (m, 4H), 2.20 
(m, 4H), 3.01 (m, 2H), 3.15 (m, 4H), 3.46 (m, 8H), 
3.69 (m, 4H). 13C NMR (CD,CN) 6 18.30 (d, J = 5.9 
Hz), 19.23, 25.20, 26.35 ( s ) ,  32.13 (d, J = 26.2 Hz), 
34.63 (d, J = 7.4 Hz), 42.59 (s), 43.31 (d, J = 3.7 
Hz), 55.14 (s), 58.15 (d, J = 11.6 Hz), 167.75 (d, J 
= 35.1 Hz). ,'P NMR (CD,CN) 6 -145.06 (sept, J = 
706.8 Hz), + 108.82. Anal. calcd for C ~ ~ H ~ ~ N S F I ~ P ~ :  
C, 41.66; H, 6.18; N,  9.34. Found: C, 41.69; H, 6.23; 
N, 9.37. 

11: 14% yield. Pale yellow solid, mp 214-217°C 
precipitated at -40°C from CH2C12/Et20. 'H NMR 
(CD,CN) 6 2.12 (m, 8H), 3.18 (m, 4H), 3.50 (m, 8H), 
3.72 (m, 4H), 7.37 (m, 5H). I3C NMR (CD,CN) 6 18.13 
(d, J = 5.7 Hz), 19.08 (s) ,  34.20 (d, J = 25.1 Hz), 
44.05 ( s ) ,  44.93 (d, J = 5.9 Hz), 56.38, 130.07 ( s ) ,  
130.48 (J = 22.0 Hz), 132.07 ( s ) ,  171.49 (d,J  = 38.3 
Hz), the Ci so are not observed. ,'P NMR (CD,CN) 
6 - 143.79 Gept, J = 708.6 Hz), + 102.28. Anal. calcd 
for C2&29N4F12P3: C, 37.16; H, 4.52; N, 8.67. Found: 
C, 37.23; H, 4.57; N,  8.71. 

12: 10% yield. Colorless crystals, mp 212-216°C 
crystallized at -40°C from CH2C12/Et20. 'H NMR 
(CD,CN) 6 1.00-2.25 (m, 36H), 3.25-3.75 (m. 18H). 
13C NMR (CD3CN) 6 20.14 (d, J = 0.9 Hz), 25.49, 
26.23, 26.42, 28.53 (s) ,  28.71 (d , J  = 15.2 Hz), 35.13 
(d,J = 8.6 Hz), 40.09 (d,J = 3.5 Hz), 47.46 (s) ,  48.89 

6.3 Hz), 164.85 (d, J = 9.4 Hz).  31p NMR (CD,CN) 
(d, J = 5.4 Hz), 54.67 (d, J = 3.1 Hz), 55.45 (d, J = 

6 - 139.21 (sept, J = 706.8 Hz), +99.86. Anal. calcd 
for C30H54N5F12P3: C, 44.72; H, 6.75; N, 8.69. Found: 
C, 44.67; H, 6.70; N,  8.64. 

13: ,'P NMR (CD,CN) 6 -143.79 (sept, J = 709.6 
Hz), +98.28. 

Synthesis of Onio-Substituted Stannane and 
Silane 
14: A mixture of dichloromethane solution (20 mL) 
of DBN (2.9 mL; 23.5 mmol), KPF6 (4.4 g; 23.9 
mmol) and Me3SnC1 (4.7 g; 23.6 mmol) was stirred 
at -20°C for 2 hours. The solution was allowed to 
warm to room temperature. After filtration, the 
solvent was removed under vacuum. Dichloro- 
methane (10 mL) was added, and the solution was 
filtered and cooled to -40°C. 14 was obtained as 
white crystals: 25% yield, mp 77-79°C. 'H NMR 

= 61.3 Hz, 9H), 1.82 (quintlike, J = 6.0 Hz, 2H), 
2.12 (quintlike,J = 8.1 Hz, 2H), 2.51 ( t , J  = 8.1 Hz, 
2H), 3.21 (m, 4H), 3.41 ( t , J  = 8.1 Hz, 2H). I3C NMR 

427.2 Hz), 18.21, 19.14, 31.92, 41.15, 43.02, 52.87, 
166.15 (s). 'I9Sn NMR (CD,CN, CDCI,) 6 1-107.12. 
Anal. calcd for C10H21N2F6Sn: C, 27.74; H, 4.89; N,  
6.47. Found: C, 27.70; H, 4.91; N,  6.42. 

15: A dichloromethane solution (10 mL) of 
Me,SiOTf (2.2 mL; 12.0 mmol) was added drop- 
wise at  room temperature to a dichloromethane 
solution (10 mL) of DBN (1.5 mL; 12.0 mmol). The 
solvent was removed under vacuum. 15 was crys- 
tallized at  -40°C as white needles from CH2C12/ 
Et20: 60% yield, mp 56-57°C. 'H NMR (CD3CN, 
C6D6) 6 0.31 ( s ,  9H), 1.92 (quintlike, J = 6.1 Hz, 2H), 
2.02 (quintlike, J = 8.1 Hz, 2H), 2.81 (t, J = 8.1 Hz, 
2H), 3.3 1 (m, 4H), 3.62 (t, J = 8.1 Hz, 2H). I3C NMR 
(CD,CN, C6D6) 6 -0.61, 17.60, 18.23, 31.10, 41.65, 
42.32, 53.23 ( s ) ,  119.55 (q , J  = 321.1 Hz), 167.2. 29Si 
NMR (CD,CN, C6D6) 6 +22.62. Anal. calcd for 
CllH21N2F303SSi: C, 38.14; H, 6.1 1; N, 8.08. Found: 
C, 38.10; H, 6.11; N,  8.07. 

(CD,CN, CDC13) 6 -0.51 ( s ,  J117Sn = 59.1 Hz, J 1 l y S n  

(CD,CN, CDC13) 6 -3.1 1 (J117Sn = 408.7 Hz, J119Sn = 

Synthesis of Trionio-Substituted Phosphine 16 
A dichloromethane solution (10 mL) of 15 (2.4 g; 
6.9 mmol) was added dropwise a t  0°C to a dichlo- 
romethane solution (10 mL) of PC13 (0.3 mL; 2.3 
mmol). The solution was allowed to warm to room 
temperature, and the solvent was removed under 
vacuum. 16 was crystallized a t  room temperature 
from CH3CN/Et20 as white crystals: 40% yield, mp 
110-1 13°C. 'H NMR (CD,CN) 6 2.20 (m, 12H), 3.25 
(t-like,J = 8.1 Hz, 6H), 3.62 (m, 12H), 3.92 (m, 6H). 
I3C NMR (CD,CN) 6 16.20 (d, J = 6.1 Hz), 18.53 ( s ) ,  
33.23 (d, J = 27.2 Hz), 43.57 ( s ) ,  44.12 (d, J = 4.2 
Hz), 56.11 ( s ) ,  120.21 (q , J  = 320.1 Hz), 169.05 (d, 
J = 42.1 Hz). 31P NMR (CD,CN) 6 +108.92. Anal. 

Found: c, 33.90; H, 4.21; N, 9.81. 
calcd for C Z ~ H ~ ~ N ~ F Y ~ ~ P S ~ :  c, 33.88; H, 4.27; N, 9.88. 
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